metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[bis(1*H*-imidazole-*κN*³)silver(I)] naphthalene-1,5-disulfonate

Ping Liu^a and Dong-Sheng Deng^{b*}

^aCollege of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, People's Republic of China, and ^bCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China

Correspondence e-mail: dengdongsheng168@sina.com

Received 16 November 2007; accepted 11 March 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.026; wR factor = 0.063; data-to-parameter ratio = 16.4.

The title compound, $[Ag(C_3H_4N_2)_2]_2(C_{10}H_6O_6S_2)$, exists in the form of isolated cations and anions with electrostatic interaction between them. The Ag atom is two-coordinated by the N atoms of two crystallographically independent imidazole molecules. The naphthalene-1,5-disulfonate anion is located on a crystallographic center of symmetry. The cations and anions are connected through intermolecular $N-H\cdots O$ hydrogen bonds.

Related literature

For related literature, see: Côté & Shimizu (2003, 2004); Cai (2004); Cai *et al.* (2001); Chen *et al.* (2001, 2002); Dalrymple & Shimizu (2002); Lian *et al.* (2007); Liu *et al.* (2006); Reddy *et al.* (2003); Shimizu *et al.* (1999); Zhou *et al.* (2004).

Experimental

Crystal data

 $\begin{bmatrix} Ag(C_3H_4N_2)_2 \end{bmatrix}_2 (C_{10}H_6O_6S_2) \\ M_r = 774.36 \\ Triclinic, P\overline{1} \\ a = 8.6491 (11) \text{ Å} \\ b = 9.0196 (12) \text{ Å} \\ c = 10.2620 (13) \text{ Å} \\ \alpha = 65.286 (2)^{\circ} \\ \beta = 76.311 (2)^{\circ} \\ \end{bmatrix}$

 $\gamma = 66.791 (2)^{\circ}$ $V = 665.89 (15) \text{ Å}^3$ Z = 1Mo K\alpha radiation $\mu = 1.68 \text{ mm}^{-1}$ T = 293 (2) K $0.50 \times 0.30 \times 0.13 \text{ mm}$

Data collection

Bruker Smart 1000 CCD

```
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
T_{\min} = 0.487, T_{\max} = 0.811
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.026$	181 parameters
$wR(F^2) = 0.063$	H-atom parameters constrained
S = 0.93	$\Delta \rho_{\rm max} = 0.70 \text{ e } \text{\AA}^{-3}$
2962 reflections	$\Delta \rho_{\rm min} = -0.67 \text{ e } \text{\AA}^{-3}$

4267 measured reflections

 $R_{\rm int} = 0.010$

2962 independent reflections

2417 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
$N4-H4A\cdots O2^{i}$	0.86	1.96	2.786 (3)	161
$N2-H2A\cdots O3^{ii}$	0.86	2.37	2.998 (3)	130
$N2-H2A\cdots O3^{iii}$	0.86	2.32	3.082 (3)	149

Symmetry codes: (i) x + 1, y, z; (ii) x - 1, y + 1, z; (iii) -x, -y + 2, -z + 2.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We thank the Henan Institute of Science and Technology for financial support and we thank Professor Ji-Wen Cai for his guidance.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2068).

References

- Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cai, J. W. (2004). Coord. Chem. Rev. 248, 1061-1083.
- Cai, J. W., Chen, C. H., Feng, X. L., Liao, C. Z. & Chen, X. M. (2001). J. Chem. Soc. Dalton Trans. pp. 2370–2375.
- Chen, C. H., Cai, J. W., Feng, X. L. & Chen, X. M. (2001). J. Chem. Crystallogr. 31, 271–280.
- Chen, C. H., Cai, J. W., Liao, C. Z., Feng, X. L., Chen, C. M. & Ng, S. W. (2002). Inorg. Chem. 41, 4967–4974.
- Côté, A. P. & Shimizu, G. K. H. (2003). Coord. Chem. Rev. 245, 49-64.
- Côté, A. P. & Shimizu, G. K. H. (2004). Inorg. Chem. 43, 6663–6673.
- Dalrymple, S. A. & Shimizu, G. K. H. (2002). Chem. Eur. J. 8, 3010-3015.
- Lian, Z. X., Cai, J. W., Chen, C. H. & Luo, H. B. (2007). CrystEngComm, 9, 319–327.
- Liu, P., Lian, Z. X. & Cai, J. W. (2006). Polyhedron, 25, 3045–3052.
- Reddy, D. S., Duncan, S. & Shimizu, G. K. H. (2003). Angew. Chem. Int. Ed. 42, 1360–1364.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shimizu, G. K. H., Enright, G. D., Ratcliffe, C. I., Preston, K. F., Reid, J. L. & Ripmeester, J. A. (1999). *Chem. Commun.* pp. 1485–1486.
- Zhou, J. S., Cai, J. W. & Wang, L. (2004). J. Chem. Soc. Dalton Trans. pp. 1493– 1497.

supplementary materials

Acta Cryst. (2008). E64, m556 [doi:10.1107/S1600536808006855]

Bis[bis(1*H*-imidazole-*KN*³)silver(I)] naphthalene-1,5-disulfonate

P. Liu and D.-S. Deng

Comment

In the part of our recent investigations into the development of mixed inorganic–organic hybrid materials, we synthesized the silver sulfonate compound, which can be possess a potential wide chemical opportunity.

Sulfonate compounds have received much attention due to their potential application in chemical absorption and separation (Cai *et al.*, 2004; Zhou *et al.*, 2004; Liu *et al.*, 2006). However, the weak coordination nature of SO₃–group makes its coordination mode very flexible and sensitive to the chemical environment (Côté *et al.*, 2003). Likewise, Ag^+ ion is a notoriously pliant with respect to its coordination sphere. Thus, in silver sulfonates, various coordination modes are observed with coordination number ranging from two to nine (Côté *et al.*, 2004; Dalrymple *et al.*, 2002; Reddy *et al.*, 2003; Shimizu *et al.*, 1999). On the other hand, the coordination behavior of arene–sulfonates with transition metals can be peculiar in the presence of amino ligands (Chen *et al.*, 2001; Cai *et al.*, 2001; Chen *et al.*, 2002).

The structure of the title compound, (I), is depicted in Fig. 1. There is one crystallographically independent Ag centre, coordinated by two nitrogen atoms from two different imidazole ligands with Ag—N1 = 2.1088 (19)Å and Ag—N2 = 2.109 (2) Å, respectively. The lesser contact distance Ag···O1 = 2.8185 (19)Å is longer than the reported Ag···O distance (Lian *et al.*, 2007).

Cations and anions are connected through intermolecular N—H···O hydrogen bonds to form a linear tapes (N4—H4A···O2ⁱⁱ): N4···O2ⁱⁱ = 2.786 (3) Å, H4A···O2ⁱⁱ = 1.96Å and angle N4—H4A···O2ⁱⁱ = 160.7°, which run along the *a*-axis. The linear tapes are arranged in parallel fashion and further linked *via* hydrogen bonding between the coordinated imidazole molecules and the sulfonate oxygen atoms, thus leading to neutral extended two–dimensional sheets (N2—H2A···O3ⁱⁱⁱ): N2···O3ⁱⁱⁱ = 2.998 (3) Å, angle N2—H2A···O3ⁱⁱⁱ = 129.8° and (N2—H2A···O3^{iv}): N2···O3^{iv} = 3.082 (3) Å, angle N2—H2A···O3^{iv} = 148.6° as shown on Fig. 2 (symmetry codes: (ii) 1 + x, y, z); (iii) x - 2, y + 1, z; (iv) -x, 2 - y, 2 - z).

Experimental

Disodium 1,5–naphthalene–disulfonate (0.33 g, 1 mmol) and imidazole (0.27 g, 4 mmol) were added to an aqueous solution of AgNO₃ (0.32 g, 2 mmol) (10 ml). The result solution was stirred at 343 K for four hours in a water bath. After filtration, a clear solution was set aside to crystallize.

Refinement

All H atoms were positioned geometrically and treated as riding, with C—H = 0.93 Å, N—H = 0.86 Å, respectively, and with $U_{iso}(H) = 1.2U_{eq}(C \text{ or } N)$

Figures

Fig. 1. Molecular structure of **I** with the numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are presented as a small spheres with arbitrary radius. Symmetry code: (i) 1 - x, 1 - y, 1 - z.

Fig. 2. View of the sheet structure of I normal to the *ac*-plane. Hydrogen bonds are represented as dashed lines.

Bis[bis(1*H*-imidazole- κN^3)silver(I)] naphthalene-1,5-disulfonate

Crystal data

$[Ag(C_3H_4N_2)_2](C_{10}H_6O_6S_2)$	Z = 1
$M_r = 774.36$	$F_{000} = 384$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.931 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo K α radiation $\lambda = 0.71073$ Å
<i>a</i> = 8.6491 (11) Å	Cell parameters from 2962 reflections
b = 9.0196 (12) Å	$\theta = 2.2 - 27.5^{\circ}$
c = 10.2620 (13) Å	$\mu = 1.68 \text{ mm}^{-1}$
$\alpha = 65.286 \ (2)^{\circ}$	T = 293 (2) K
$\beta = 76.311 \ (2)^{\circ}$	Block, colourless
$\gamma = 66.791 \ (2)^{\circ}$	$0.50\times0.30\times0.13~mm$
$V = 665.89 (15) \text{ Å}^3$	

Data collection

Bruker Smart 1000 CCD diffractometer	2962 independent reflections
Radiation source: Fine-focus sealed tube	2417 reflections with $I > 2\sigma(I)$
Monochromator: Graphite	$R_{\rm int} = 0.010$
T = 293(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ϕ - and ω -scans	$\theta_{\min} = 2.2^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2001)	$h = -11 \rightarrow 9$
$T_{\min} = 0.487, T_{\max} = 0.811$	$k = -11 \rightarrow 10$
4267 measured reflections	$l = -13 \rightarrow 13$

Refinement

Refinement on F^2

Secondary atom site location: difference Fourier map

Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.026$	H-atom parameters constrained
$wR(F^2) = 0.063$	$w = 1/[\sigma^2(F_o^2) + (0.0388P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.93	$(\Delta/\sigma)_{max} < 0.001$
2962 reflections	$\Delta \rho_{max} = 0.70 \text{ e } \text{\AA}^{-3}$
181 parameters	$\Delta \rho_{\rm min} = -0.67 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Agl	0.27879 (2)	1.03409 (3)	0.79027 (2)	0.05010 (9)
S1	0.26541 (6)	0.60865 (7)	0.78924 (5)	0.02831 (12)
01	0.2153 (2)	0.7948 (2)	0.71897 (19)	0.0442 (4)
02	0.1257 (2)	0.5487 (2)	0.87280 (17)	0.0403 (4)
03	0.40789 (19)	0.5352 (2)	0.87452 (17)	0.0394 (4)
N1	0.0163 (2)	1.1487 (3)	0.8293 (2)	0.0375 (5)
N2	-0.2347 (3)	1.2925 (3)	0.9009 (2)	0.0432 (5)
H2A	-0.3130	1.3607	0.9392	0.052*
N3	0.5433 (3)	0.9312 (3)	0.7528 (2)	0.0452 (5)
N4	0.8038 (3)	0.7606 (3)	0.7855 (3)	0.0526 (6)
H4A	0.8907	0.6797	0.8272	0.063*
C1	-0.0695 (3)	1.2583 (3)	0.8957 (3)	0.0400 (6)
H1A	-0.0211	1.3053	0.9338	0.048*
C2	-0.2576 (3)	1.2010 (4)	0.8351 (3)	0.0478 (6)
H2B	-0.3600	1.1994	0.8230	0.057*
C3	-0.1029 (3)	1.1132 (3)	0.7907 (3)	0.0441 (6)
H3A	-0.0801	1.0397	0.7415	0.053*
C4	0.6465 (4)	0.8000 (4)	0.8461 (3)	0.0521 (7)
H4B	0.6136	0.7427	0.9413	0.063*
C5	0.8032 (3)	0.8703 (4)	0.6468 (3)	0.0500 (7)
H5A	0.8953	0.8729	0.5783	0.060*
C6	0.6423 (3)	0.9747 (4)	0.6280 (3)	0.0454 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H6A	0.6041	1.0637	0.5423	0.054*
C7	0.3281 (2)	0.5262 (3)	0.6470 (2)	0.0261 (4)
C8	0.2202 (3)	0.4654 (3)	0.6223 (2)	0.0315 (5)
H8A	0.1202	0.4645	0.6810	0.038*
C9	0.2585 (3)	0.4046 (3)	0.5098 (3)	0.0356 (5)
H9A	0.1838	0.3637	0.4942	0.043*
C10	0.4037 (3)	0.4044 (3)	0.4227 (2)	0.0303 (5)
H10A	0.4281	0.3617	0.3492	0.036*
C11	0.5190 (2)	0.4687 (3)	0.4427 (2)	0.0244 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag1	0.02873 (11)	0.04781 (14)	0.06505 (16)	-0.00509 (8)	-0.00059 (8)	-0.02144 (11)
S1	0.0227 (2)	0.0346 (3)	0.0263 (3)	-0.0032 (2)	0.00093 (19)	-0.0173 (2)
O1	0.0487 (10)	0.0341 (9)	0.0476 (10)	-0.0029 (8)	-0.0031 (8)	-0.0236 (8)
O2	0.0293 (8)	0.0570 (11)	0.0346 (8)	-0.0124 (8)	0.0063 (7)	-0.0233 (8)
O3	0.0279 (8)	0.0556 (11)	0.0329 (8)	-0.0057 (7)	-0.0030 (6)	-0.0220 (8)
N1	0.0316 (10)	0.0353 (11)	0.0465 (11)	-0.0088 (8)	0.0017 (8)	-0.0205 (9)
N2	0.0362 (11)	0.0375 (11)	0.0476 (12)	-0.0032 (9)	0.0050 (9)	-0.0208 (10)
N3	0.0304 (11)	0.0365 (11)	0.0600 (14)	-0.0080 (9)	-0.0059 (10)	-0.0113 (10)
N4	0.0325 (11)	0.0442 (13)	0.0836 (18)	-0.0012 (9)	-0.0170 (11)	-0.0300 (13)
C1	0.0413 (13)	0.0409 (14)	0.0435 (13)	-0.0144 (11)	0.0025 (10)	-0.0232 (11)
C2	0.0337 (13)	0.0473 (15)	0.0614 (17)	-0.0097 (11)	-0.0081 (12)	-0.0203 (14)
C3	0.0415 (14)	0.0414 (14)	0.0579 (16)	-0.0109 (11)	-0.0037 (12)	-0.0291 (13)
C4	0.0435 (15)	0.0431 (15)	0.0591 (17)	-0.0119 (12)	-0.0076 (13)	-0.0094 (13)
C5	0.0403 (15)	0.0558 (17)	0.0661 (18)	-0.0174 (13)	0.0001 (13)	-0.0347 (16)
C6	0.0423 (14)	0.0419 (14)	0.0541 (16)	-0.0138 (12)	-0.0073 (12)	-0.0180 (13)
C7	0.0245 (10)	0.0275 (10)	0.0249 (10)	-0.0054 (8)	0.0001 (8)	-0.0126 (9)
C8	0.0260 (11)	0.0363 (12)	0.0346 (11)	-0.0126 (9)	0.0048 (9)	-0.0168 (10)
C9	0.0311 (12)	0.0424 (13)	0.0433 (13)	-0.0167 (10)	-0.0003 (9)	-0.0223 (11)
C10	0.0303 (11)	0.0349 (12)	0.0317 (11)	-0.0123 (9)	0.0006 (9)	-0.0182 (10)
C11	0.0252 (10)	0.0225 (10)	0.0236 (10)	-0.0051 (8)	-0.0016 (8)	-0.0095 (8)

Geometric parameters (Å, °)

Ag1—N1	2.1092 (19)	C2—C3	1.342 (4)
Ag1—N3	2.110 (2)	C2—H2B	0.9300
Ag1—O1	2.8180 (19)	С3—НЗА	0.9300
S1—O1	1.4451 (19)	C4—H4B	0.9300
S1—O3	1.4511 (16)	C5—C6	1.343 (4)
S1—O2	1.4573 (18)	С5—Н5А	0.9300
S1—C7	1.787 (2)	С6—Н6А	0.9300
N1—C1	1.318 (3)	С7—С8	1.367 (3)
N1—C3	1.371 (3)	C7—C11 ⁱ	1.426 (3)
N2—C1	1.329 (3)	C8—C9	1.396 (3)
N2—C2	1.354 (4)	С8—Н8А	0.9300
N2—H2A	0.8600	C9—C10	1.358 (3)

N3—C4	1.318 (3)	С9—Н9А	0.9300
N3—C6	1.361 (4)	C10—C11	1.423 (3)
N4—C4	1.330 (4)	C10—H10A	0.9300
N4—C5	1.351 (4)	C11—C7 ⁱ	1.426 (3)
N4—H4A	0.8600	C11—C11 ⁱ	1.428 (4)
C1—H1A	0.9300		
N1—Ag1—N3	176.72 (8)	C2—C3—N1	109.5 (2)
N1—Ag1—O1	89.09 (7)	С2—С3—НЗА	125.2
N3—Ag1—O1	94.16 (7)	N1—C3—H3A	125.2
01—S1—O3	113.46 (11)	N3—C4—N4	110.8 (3)
O1—S1—O2	113.10 (11)	N3—C4—H4B	124.6
O3—S1—O2	111.15 (10)	N4—C4—H4B	124.6
O1—S1—C7	105.46 (10)	C6—C5—N4	105.9 (3)
O3—S1—C7	107.98 (9)	С6—С5—Н5А	127.0
O2—S1—C7	105.03 (10)	N4—C5—H5A	127.0
S1—O1—Ag1	128.71 (10)	C5—C6—N3	110.0 (3)
C1—N1—C3	105.4 (2)	С5—С6—Н6А	125.0
C1—N1—Ag1	130.79 (18)	N3—C6—H6A	125.0
C3—N1—Ag1	123.79 (16)	C8—C7—C11 ⁱ	120.85 (19)
C1—N2—C2	107.9 (2)	C8—C7—S1	117.59 (16)
C1—N2—H2A	126.1	C11 ⁱ —C7—S1	121.48 (16)
C2—N2—H2A	126.1	С7—С8—С9	120.6 (2)
C4—N3—C6	105.3 (2)	С7—С8—Н8А	119.7
C4—N3—Ag1	126.0 (2)	С9—С8—Н8А	119.7
C6—N3—Ag1	128.55 (18)	C10—C9—C8	120.8 (2)
C4—N4—C5	108.0 (2)	С10—С9—Н9А	119.6
C4—N4—H4A	126.0	С8—С9—Н9А	119.6
C5—N4—H4A	126.0	C9—C10—C11	120.8 (2)
N1—C1—N2	110.9 (2)	C9—C10—H10A	119.6
N1—C1—H1A	124.5	C11-C10-H10A	119.6
N2—C1—H1A	124.5	C10—C11—C7 ⁱ	123.01 (18)
C3—C2—N2	106.3 (2)	C10—C11—C11 ⁱ	118.9 (2)
C3—C2—H2B	126.8	C7 ⁱ —C11—C11 ⁱ	118.1 (2)
N2—C2—H2B	126.8		
O3—S1—O1—Ag1	-21.44 (16)	C5—N4—C4—N3	-0.2 (3)
O2—S1—O1—Ag1	106.34 (13)	C4—N4—C5—C6	0.2 (3)
C7—S1—O1—Ag1	-139.42 (11)	N4—C5—C6—N3	-0.1 (3)
N1—Ag1—O1—S1	-117.49 (14)	C4—N3—C6—C5	0.0 (3)
N3—Ag1—O1—S1	62.94 (14)	Ag1—N3—C6—C5	-175.65 (19)
O1—Ag1—N1—C1	165.5 (2)	O1—S1—C7—C8	-105.14 (19)
O1—Ag1—N1—C3	-11.9 (2)	O3—S1—C7—C8	133.26 (18)
O1—Ag1—N3—C4	-85.4 (2)	O2—S1—C7—C8	14.6 (2)
O1—Ag1—N3—C6	89.4 (2)	01—S1—C7—C11 ⁱ	71.72 (19)
C3—N1—C1—N2	0.1 (3)	O3—S1—C7—C11 ⁱ	-49.88 (19)
Ag1—N1—C1—N2	-177.57 (16)	02—S1—C7—C11 ⁱ	-168.56 (16)
C2—N2—C1—N1	0.1 (3)	C11 ⁱ —C7—C8—C9	0.9 (3)

supplementary materials

C1—N2—C2—C3 N2—C2—C3—N1 C1—N1—C3—C2 Ag1—N1—C3—C2 C6—N3—C4—N4 Ag1—N3—C4—N4 Symmetry codes: (i) $-x+1$, $-y+1$, $-z+1$.	-0.3 (3) 0.4 (3) -0.3 (3) 177.61 (18) 0.1 (3) 175.93 (19)	S1—C7—C8—C9 C7—C8—C9—C10 C8—C9—C10—C11 C9—C10—C11—C7 ⁱ C9—C10—C11—C11 ⁱ		177.80 (18) 0.1 (4) -1.0 (4) -179.0 (2) 0.9 (4)	
Hydrogen-bond geometry (Å, °)					
D—H···A	D—H	H···A	$D \cdots A$	D—H···A	
N4—H4A···O2 ⁱⁱ	0.86	1.96	2.786 (3)	161	
N2—H2A···O3 ⁱⁱⁱ	0.86	2.37	2.998 (3)	130	
N2—H2A···O3 ^{iv}	0.86	2.32	3.082 (3)	149	
Symmetry codes: (ii) $x+1$, y , z ; (iii) $x-1$, $y+1$, z ; (iv) $-x$, $-y+2$, $-z+2$.					

